帐户抽象自定义
帐户抽象自定义
现在,让我们来学习如何部署你的自定义账户,并与ContractDeployer系统合约直接互动。 在本教程中,我们建立一个工厂,部署2-of-2的自定义账户。
前提条件
在进入本教程之前,强烈建议阅读账户抽象协议的design。
假设你已经熟悉在zkSync上部署智能合约。 如果没有,请参考快速入门教程的第一部分。 还建议阅读系统合同的介绍。
安装依赖项
我们将使用zkSync硬帽插件来开发这个合同。首先,我们应该为它安装所有的依赖项。
mkdir custom-aa-tutorial
cd custom-aa-tutorial
yarn init -y
yarn add -D typescript ts-node ethers@^5.7.2 zksync-web3@^0.13.1 hardhat @matterlabs/hardhat-zksync-solc @matterlabs/hardhat-zksync-deploy
Tips
当前版本的zksync-web3
使用ethers v5.7.x
作为同行依赖。与ethers v6.x.x
兼容的更新将很快发布。
由于我们正在使用zkSync合约,我们还需要安装带有合同及其同行依赖关系的软件包。
yarn add -D @matterlabs/zksync-contracts @openzeppelin/contracts @openzeppelin/contracts-upgradeable
同时,创建hardhat.config.ts
配置文件、contracts
和deploy
文件夹,与快速入门教程类似。由于在这个项目中,我们的合约将与系统合约互动,我们需要在编译器设置中加入isSystem: true
。
import "@matterlabs/hardhat-zksync-deploy";
import "@matterlabs/hardhat-zksync-solc";
module.exports = {
zksolc: {
version: "1.3.1",
compilerSource: "binary",
settings: {
isSystem: true,
},
},
defaultNetwork: "zkSyncTestnet",
networks: {
zkSyncTestnet: {
url: "https://zksync2-testnet.zksync.dev",
ethNetwork: "goerli", // Can also be the RPC URL of the network (e.g. `https://goerli.infura.io/v3/<API_KEY>`)
zksync: true,
},
},
solidity: {
version: "0.8.17",
},
};
Tips
你可以使用zkSync CLI来自动构建一个项目的支架。查找关于zkSync CLI的更多信息
帐户抽象
每个账户都需要实现IAccount接口。因为我们要建立一个有签名者的账户,所以我们也应该实现EIP1271。
合约的构成如下。
import "@matterlabs/zksync-contracts/l2/system-contracts/interfaces/IAccount.sol"; import "@matterlabs/zksync-contracts/l2/system-contracts/libraries/TransactionHelper.sol";
import "@openzeppelin/contracts/interfaces/IERC1271.sol";
contract TwoUserMultisig is IAccount, IERC1271 { // to get transaction hash using TransactionHelper for Transaction;
bytes4 constant EIP1271_SUCCESS_RETURN_VALUE = 0x1626ba7e;
modifier onlyBootloader() {
require(
msg.sender == BOOTLOADER_FORMAL_ADDRESS,
"Only bootloader can call this method"
);
// Continure execution if called from the bootloader.
_;
}
function validateTransaction(
bytes32,
bytes32 _suggestedSignedHash,
Transaction calldata _transaction
) external payable override onlyBootloader returns (bytes4 magic) {
magic = _validateTransaction(_suggestedSignedHash, _transaction);
}
function _validateTransaction(
bytes32 _suggestedSignedHash,
Transaction calldata _transaction
) internal returns (bytes4 magic) {
// TO BE IMPLEMENTED
}
function executeTransaction(
bytes32,
bytes32,
Transaction calldata _transaction
) external payable override onlyBootloader {
_executeTransaction(_transaction);
}
function _executeTransaction(Transaction calldata _transaction) internal {
// TO BE IMPLEMENTED
}
function executeTransactionFromOutside(Transaction calldata _transaction)
external
payable
{
_validateTransaction(bytes32(0), _transaction);
_executeTransaction(_transaction);
}
function isValidSignature(bytes32 _hash, bytes memory _signature)
public
view
override
returns (bytes4 magic)
{
// TO BE IMPLEMENTED
}
function payForTransaction(
bytes32,
bytes32,
Transaction calldata _transaction
) external payable override onlyBootloader {
// TO BE IMPLEMENTED
}
function prepareForPaymaster(
bytes32, // _txHash
bytes32, // _suggestedSignedHash
Transaction calldata _transaction
) external payable override onlyBootloader {
// TO BE IMPLEMENTED
}
// This function verifies that the ECDSA signature is both in correct format and non-malleable
function checkValidECDSASignatureFormat(bytes memory _signature) internal pure returns (bool) {
if(_signature.length != 65) {
return false;
}
uint8 v;
bytes32 r;
bytes32 s;
// Signature loading code
// we jump 32 (0x20) as the first slot of bytes contains the length
// we jump 65 (0x41) per signature
// for v we load 32 bytes ending with v (the first 31 come from s) then apply a mask
assembly {
r := mload(add(_signature, 0x20))
s := mload(add(_signature, 0x40))
v := and(mload(add(_signature, 0x41)), 0xff)
}
if(v != 27 && v != 28) {
return false;
}
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if(uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return false;
}
return true;
}
function extractECDSASignature(bytes memory _fullSignature) internal pure returns (bytes memory signature1, bytes memory signature2) {
require(_fullSignature.length == 130, "Invalid length");
signature1 = new bytes(65);
signature2 = new bytes(65);
// Copying the first signature. Note, that we need an offset of 0x20
// since it is where the length of the `_fullSignature` is stored
assembly {
let r := mload(add(_fullSignature, 0x20))
let s := mload(add(_fullSignature, 0x40))
let v := and(mload(add(_fullSignature, 0x41)), 0xff)
mstore(add(signature1, 0x20), r)
mstore(add(signature1, 0x40), s)
mstore8(add(signature1, 0x60), v)
}
// Copying the second signature.
assembly {
let r := mload(add(_fullSignature, 0x61))
let s := mload(add(_fullSignature, 0x81))
let v := and(mload(add(_fullSignature, 0x82)), 0xff)
mstore(add(signature2, 0x20), r)
mstore(add(signature2, 0x40), s)
mstore8(add(signature2, 0x60), v)
}
}
fallback() external {
// fallback of default account shouldn't be called by bootloader under no circumstances
assert(msg.sender != BOOTLOADER_FORMAL_ADDRESS);
// If the contract is called directly, behave like an EOA
}
receive() external payable {
// If the contract is called directly, behave like an EOA.
// Note, that is okay if the bootloader sends funds with no calldata as it may be used for refunds/operator payments
}
}
注意,只有[bootloader](.../developer-guides/system-contracts.md#bootloader)才允许调用`validateTransaction`/`executeTransaction`/`payForTransaction`/`prepareForPaymaster`方法。
这就是为什么`onlyBootloader`修改器被用于它们。
需要`executeTransactionFromOutside`来允许外部用户从这个账户发起交易。实现它的最简单方法是与`validateTransaction`+`executeTransaction`的做法一样。
此外,`checkValidECDSASignatureFormat`和`extractECDSASignature`是帮助方法,我们将在`isValidSignature`实现中使用。
### 签名验证
首先,我们需要实现签名验证过程。 在本教程中,我们使用OpenZeppelin的`ECDSA`库进行签名验证,所以我们需要导入它。
```solidity
// Used for signature validation
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
由于我们正在建立一个双账户多义词,让我们在构造函数中传递其所有者的地址并保存其状态变量。
// state variables for account owners
address public owner1;
address public owner2;
constructor(address _owner1, address _owner2) {
owner1 = _owner1;
owner2 = _owner2;
}
为了验证签名,我们必须。
- 检查收到的签名的长度是否正确。
- 使用辅助方法
extractECDSASignature
从收到的多重签名中提取两个签名。 - 使用辅助方法`checkValidECDSASignatureFormat'检查两个签名是否有效。
- 使用
ECDSA.recover
方法从交易哈希和每个签名中提取地址。 - 检查提取的地址是否与账户的所有者相符。
- 成功时返回
EIP1271_SUCCESS_RETURN_VALUE
值,如果验证失败则返回bytes4(0)
。
下面是isValidSignature
方法的完整实现。
function isValidSignature(bytes32 _hash, bytes memory _signature)
public
view
override
returns (bytes4 magic)
{
magic = EIP1271_SUCCESS_RETURN_VALUE;
if (_signature.length != 130) {
// Signature is invalid, but we need to proceed with the signature verification as usual
// in order for the fee estimation to work correctly
_signature = new bytes(130);
// Making sure that the signatures look like a valid ECDSA signature and are not rejected rightaway
// while skipping the main verification process.
_signature[64] = bytes1(uint8(27));
_signature[129] = bytes1(uint8(27));
}
(bytes memory signature1, bytes memory signature2) = extractECDSASignature(_signature);
if(!checkValidECDSASignatureFormat(signature1) || !checkValidECDSASignatureFormat(signature2)) {
magic = bytes4(0);
}
address recoveredAddr1 = ECDSA.recover(_hash, signature1);
address recoveredAddr2 = ECDSA.recover(_hash, signature2);
// Note, that we should abstain from using the require here in order to allow for fee estimation to work
if(recoveredAddr1 != owner1 || recoveredAddr2 != owner2) {
magic = bytes4(0);
}
}
交易验证
让我们来实现验证过程。它负责验证交易的签名和增加nonce。注意,这个方法允许做的事情有一些限制。你可以在这里读到更多的信息(.../developer-guides/aa.md#limitations-the-verification-step)。
要增加nonce,你应该使用NONCE_HOLDER_SYSTEM_CONTRACT
系统合约的incrementNonceIfEquals
方法。它获取交易的nonce,并检查该nonce是否与提供的nonce相同。如果不一样,交易就会恢复。否则,nonce被增加。
即使上面的要求允许账户只接触他们的存储槽,在NONCE_HOLDER_SYSTEM_CONTRACT
中访问你的nonce是一个白名单的情况,因为它的行为与你的存储相同,只是刚好在另一个合同中。为了调用NONCE_HOLDER_SYSTEM_CONTRACT
,你应该添加以下导入。
// Access zkSync system contracts, in this case for nonce validation vs NONCE_HOLDER_SYSTEM_CONTRACT
import "@matterlabs/zksync-contracts/l2/system-contracts/Constants.sol";
注意,由于NONCE_HOLDER_SYSTEM_CONTRACT
的非视图方法需要在打开isSystem
标志的情况下调用,所以应该使用SystemContractsCaller
库的systemCallWithPropagatedRevert方法,所以这个库也需要导入。
// to call non-view method of system contracts
import "@matterlabs/zksync-contracts/l2/system-contracts/libraries/SystemContractsCaller.sol";
TransactionHelper
库(上面已经导入了using TransactionHelper for Transaction;
),可以用来获取应该被签名的交易的哈希值。你也可以实现你自己的签名方案,对要签名的事务使用不同的承诺,但在这个例子中,我们使用这个库提供的哈希值。
最后,如果验证成功,_validateTransaction
方法必须返回常量ACCOUNT_VALIDATION_SUCCESS_MAGIC
,如果失败则返回空值bytes4(0)
。
下面是_validateTransaction
方法的完整实现。
function _validateTransaction(
bytes32 _suggestedSignedHash,
Transaction calldata _transaction
) internal returns (bytes4 magic) {
// Incrementing the nonce of the account.
// Note, that reserved[0] by convention is currently equal to the nonce passed in the transaction
SystemContractsCaller.systemCallWithPropagatedRevert(
uint32(gasleft()),
address(NONCE_HOLDER_SYSTEM_CONTRACT),
0,
abi.encodeCall(INonceHolder.incrementMinNonceIfEquals, (_transaction.nonce))
);
bytes32 txHash;
// While the suggested signed hash is usually provided, it is generally
// not recommended to rely on it to be present, since in the future
// there may be tx types with no suggested signed hash.
if (_suggestedSignedHash == bytes32(0)) {
txHash = _transaction.encodeHash();
} else {
txHash = _suggestedSignedHash;
}
// The fact there is are enough balance for the account
// should be checked explicitly to prevent user paying for fee for a
// transaction that wouldn't be included on Ethereum.
uint256 totalRequiredBalance = _transaction.totalRequiredBalance();
require(totalRequiredBalance <= address(this).balance, "Not enough balance for fee + value");
if (isValidSignature(txHash, _transaction.signature) == EIP1271_SUCCESS_RETURN_VALUE) {
magic = ACCOUNT_VALIDATION_SUCCESS_MAGIC;
} else {
magic = bytes4(0);
}
}
为交易支付费用
我们现在应该实现payForTransaction
方法。TransactionHelper "库已经为我们提供了 "payToTheBootloader "方法,该方法将"_transaction.maxFeePerGas * _transaction.gasLimit "ETH发送给bootloader。因此,实现起来相当简单明了。
function payForTransaction(
bytes32,
bytes32,
Transaction calldata _transaction
) external payable override onlyBootloader {
bool success = _transaction.payToTheBootloader();
require(success, "Failed to pay the fee to the operator");
}
实现对付款人的支持
虽然一般来说,账户抽象协议可以在与付款人互动时执行任意的动作,但有一些常见模式与EOAs的内置支持。 除非你想为你的账户实现或限制一些特定的paymaster用例,否则最好保持与EOAs一致。
TransactionHelper "库提供了 "processPaymasterInput",它正是这样做的:处理paymaster参数与EOAs中的一样。
function prepareForPaymaster(
bytes32, // _txHash
bytes32, // _suggestedSignedHash
Transaction calldata _transaction
) external payable override onlyBootloader {
_transaction.processPaymasterInput();
}
交易执行
交易执行的最基本实现是非常直接的。我们提取交易数据并执行它。
function _executeTransaction(Transaction calldata _transaction) internal {
uint256 to = _transaction.to;
// By convention, the `reserved[1]` field is msg.value
uint256 value = _transaction.reserved[1];
bytes memory data = _transaction.data;
bool success;
// execute transaction
assembly {
success := call(gas(), to, value, add(data, 0x20), mload(data), 0, 0)
}
// Return value required for the transaction to be correctly processed by the server.
require(success);
}
然而,请注意,调用ContractDeployer只有在 "isSystem "调用标志下才能实现。为了让你的用户能够部署合同,你应该明确地这样做。
function _executeTransaction(Transaction calldata _transaction) internal {
address to = address(uint160(_transaction.to));
uint128 value = Utils.safeCastToU128(_transaction.value);
bytes memory data = _transaction.data;
if (to == address(DEPLOYER_SYSTEM_CONTRACT)) {
uint32 gas = Utils.safeCastToU32(gasleft());
// Note, that the deployer contract can only be called
// with a "systemCall" flag.
SystemContractsCaller.systemCallWithPropagatedRevert(ag-0-1gr0ere8lgaag-1-1gr0ere8ls, to, value, data);
} else {
bool success;
assembly {
success := call(gas(), to, value, add(data, 0x20), mload(data), 0, 0)
}
require(success);
}
}
注意,操作者是否认为交易成功,只取决于对executeTransactions
的调用是否成功。因此,强烈建议为交易设置require(success)
,以便用户获得最佳的用户体验。
账户的全部代码
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@matterlabs/zksync-contracts/l2/system-contracts/interfaces/IAccount.sol";
import "@matterlabs/zksync-contracts/l2/system-contracts/libraries/TransactionHelper.sol";
import "@openzeppelin/contracts/interfaces/IERC1271.sol";
// Used for signature validation
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
// Access zkSync system contracts, in this case for nonce validation vs NONCE_HOLDER_SYSTEM_CONTRACT
import "@matterlabs/zksync-contracts/l2/system-contracts/Constants.sol";
// to call non-view method of system contracts
import "@matterlabs/zksync-contracts/l2/system-contracts/libraries/SystemContractsCaller.sol";
contract TwoUserMultisig is IAccount, IERC1271 {
// to get transaction hash
using TransactionHelper for Transaction;
// state variables for account owners
address public owner1;
address public owner2;
bytes4 constant EIP1271_SUCCESS_RETURN_VALUE = 0x1626ba7e;
modifier onlyBootloader() {
require(
msg.sender == BOOTLOADER_FORMAL_ADDRESS,
"Only bootloader can call this method"
);
// Continue execution if called from the bootloader.
_;
}
constructor(address _owner1, address _owner2) {
owner1 = _owner1;
owner2 = _owner2;
}
function validateTransaction(
bytes32,
bytes32 _suggestedSignedHash,
Transaction calldata _transaction
) external payable override onlyBootloader returns (bytes4 magic) {
return _validateTransaction(_suggestedSignedHash, _transaction);
}
function _validateTransaction(
bytes32 _suggestedSignedHash,
Transaction calldata _transaction
) internal returns (bytes4 magic) {
// Incrementing the nonce of the account.
// Note, that reserved[0] by convention is currently equal to the nonce passed in the transaction
SystemContractsCaller.systemCallWithPropagatedRevert(
uint32(gasleft()),
address(NONCE_HOLDER_SYSTEM_CONTRACT),
0,
abi.encodeCall(INonceHolder.incrementMinNonceIfEquals, (_transaction.nonce))
);
bytes32 txHash;
// While the suggested signed hash is usually provided, it is generally
// not recommended to rely on it to be present, since in the future
// there may be tx types with no suggested signed hash.
if (_suggestedSignedHash == bytes32(0)) {
txHash = _transaction.encodeHash();
} else {
txHash = _suggestedSignedHash;
}
// The fact there is are enough balance for the account
// should be checked explicitly to prevent user paying for fee for a
// transaction that wouldn't be included on Ethereum.
uint256 totalRequiredBalance = _transaction.totalRequiredBalance();
require(totalRequiredBalance <= address(this).balance, "Not enough balance for fee + value");
if (isValidSignature(txHash, _transaction.signature) == EIP1271_SUCCESS_RETURN_VALUE) {
magic = ACCOUNT_VALIDATION_SUCCESS_MAGIC;
} else {
magic = bytes4(0);
}
}
function executeTransaction(
bytes32,
bytes32,
Transaction calldata _transaction
) external payable override onlyBootloader {
_executeTransaction(_transaction);
}
function _executeTransaction(Transaction calldata _transaction) internal {
address to = address(uint160(_transaction.to));
uint128 value = Utils.safeCastToU128(_transaction.value);
bytes memory data = _transaction.data;
if (to == address(DEPLOYER_SYSTEM_CONTRACT)) {
uint32 gas = Utils.safeCastToU32(gasleft());
// Note, that the deployer contract can only be called
// with a "systemCall" flag.
SystemContractsCaller.systemCallWithPropagatedRevert(gas, to, value, data);
} else {
bool success;
assembly {
success := call(gas(), to, value, add(data, 0x20), mload(data), 0, 0)
}
require(success);
}
}
function executeTransactionFromOutside(Transaction calldata _transaction)
external
payable
{
_validateTransaction(bytes32(0), _transaction);
_executeTransaction(_transaction);
}
function isValidSignature(bytes32 _hash, bytes memory _signature)
public
view
override
returns (bytes4 magic)
{
magic = EIP1271_SUCCESS_RETURN_VALUE;
if (_signature.length != 130) {
// Signature is invalid anyway, but we need to proceed with the signature verification as usual
// in order for the fee estimation to work correctly
_signature = new bytes(130);
// Making sure that the signatures look like a valid ECDSA signature and are not rejected rightaway
// while skipping the main verification process.
_signature[64] = bytes1(uint8(27));
_signature[129] = bytes1(uint8(27));
}
(bytes memory signature1, bytes memory signature2) = extractECDSASignature(_signature);
if(!checkValidECDSASignatureFormat(signature1) || !checkValidECDSASignatureFormat(signature2)) {
magic = bytes4(0);
}
address recoveredAddr1 = ECDSA.recover(_hash, signature1);
address recoveredAddr2 = ECDSA.recover(_hash, signature2);
// Note, that we should abstain from using the require here in order to allow for fee estimation to work
if(recoveredAddr1 != owner1 || recoveredAddr2 != owner2) {
magic = bytes4(0);
}
}
// This function verifies that the ECDSA signature is both in correct format and non-malleable
function checkValidECDSASignatureFormat(bytes memory _signature) internal pure returns (bool) {
if(_signature.length != 65) {
return false;
}
uint8 v;
bytes32 r;
bytes32 s;
// Signature loading code
// we jump 32 (0x20) as the first slot of bytes contains the length
// we jump 65 (0x41) per signature
// for v we load 32 bytes ending with v (the first 31 come from s) then apply a mask
assembly {
r := mload(add(_signature, 0x20))
s := mload(add(_signature, 0x40))
v := and(mload(add(_signature, 0x41)), 0xff)
}
if(v != 27 && v != 28) {
return false;
}
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if(uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return false;
}
return true;
}
function extractECDSASignature(bytes memory _fullSignature) internal pure returns (bytes memory signature1, bytes memory signature2) {
require(_fullSignature.length == 130, "Invalid length");
signature1 = new bytes(65);
signature2 = new bytes(65);
// Copying the first signature. Note, that we need an offset of 0x20
// since it is where the length of the `_fullSignature` is stored
assembly {
let r := mload(add(_fullSignature, 0x20))
let s := mload(add(_fullSignature, 0x40))
let v := and(mload(add(_fullSignature, 0x41)), 0xff)
mstore(add(signature1, 0x20), r)
mstore(add(signature1, 0x40), s)
mstore8(add(signature1, 0x60), v)
}
// Copying the second signature.
assembly {
let r := mload(add(_fullSignature, 0x61))
let s := mload(add(_fullSignature, 0x81))
let v := and(mload(add(_fullSignature, 0x82)), 0xff)
mstore(add(signature2, 0x20), r)
mstore(add(signature2, 0x40), s)
mstore8(add(signature2, 0x60), v)
}
}
function payForTransaction(
bytes32,
bytes32,
Transaction calldata _transaction
) external payable override onlyBootloader {
bool success = _transaction.payToTheBootloader();
require(success, "Failed to pay the fee to the operator");
}
function prepareForPaymaster(
bytes32, // _txHash
bytes32, // _suggestedSignedHash
Transaction calldata _transaction
) external payable override onlyBootloader {
_transaction.processPaymasterInput();
}
fallback() external {
// fallback of default account shouldn't be called by bootloader under no circumstances
assert(msg.sender != BOOTLOADER_FORMAL_ADDRESS);
// If the contract is called directly, behave like an EOA
}
receive() external payable {
// If the contract is called directly, behave like an EOA.
// Note, that is okay if the bootloader sends funds with no calldata as it may be used for refunds/operator payments
}
}
工厂
现在,让我们建立一个可以部署这些账户的工厂。为了部署智能合约账户,我们需要直接与DEPLOYER_SYSTEM_CONTRACT
互动。对于确定性的地址,我们将调用create2Account
方法。
代码将看起来如下。
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@matterlabs/zksync-contracts/l2/system-contracts/Constants.sol";
import "@matterlabs/zksync-contracts/l2/system-contracts/libraries/SystemContractsCaller.sol";
contract AAFactory {
bytes32 public aaBytecodeHash;
constructor(bytes32 _aaBytecodeHash) {
aaBytecodeHash = _aaBytecodeHash;
}
function deployAccount(
bytes32 salt,
address owner1,
address owner2
) external returns (address accountAddress) {
(bool success, bytes memory returnData) = SystemContractsCaller
.systemCallWithReturndata(
uint32(gasleft()),
address(DEPLOYER_SYSTEM_CONTRACT),
uint128(0),
abi.encodeCall(
DEPLOYER_SYSTEM_CONTRACT.create2Account,
(salt, aaBytecodeHash, abi.encode(owner1, owner2), IContractDeployer.AccountAbstractionVersion.Version1)
)
);
require(success, "Deployment failed");
(accountAddress) = abi.decode(returnData, (address));
}
}
值得一提的是,在zkSync上,合约的部署不是通过字节码完成的,而是通过字节码哈希完成的。字节码本身是通过factoryDeps
字段传递给操作者的。请注意,`_aaBytecodeHash'必须被特别形成。
- 首先,它是用sha256散列的。
- 然后,前两个字节被替换为32字节的字节码的长度。
你不需要担心这个问题,因为我们的SDK提供了一个内置的方法来做到这一点,解释如下。
部署工厂
要部署一个工厂,我们需要创建一个部署脚本。创建deploy
文件夹,并在其中创建一个文件。deploy-factory.ts
。把下面的部署脚本放在那里。
import { utils, Wallet } from 'zksync-web3';
import * as ethers from 'ethers';
import { HardhatRuntimeEnvironment } from 'hardhat/types';
import { Deployer } from '@matterlabs/hardhat-zksync-deploy';
export default async function (hre: HardhatRuntimeEnvironment) {
const wallet = new Wallet('<WALLET_PRIVATE_KEY>');
const deployer = new Deployer(hre, wallet);
const factoryArtifact = await deployer.loadArtifact('AAFactory');
const aaArtifact = await deployer.loadArtifact('TwoUserMultisig');
// Deposit some funds to L2 in order to be able to perform L2 transactions.
// You can remove the depositing step if the `wallet` has enough funds on zkSync
const depositAmount = ethers.utils.parseEther('0.001');
const depositHandle = await deployer.zkWallet.deposit({
to: deployer.zkWallet.address,
token: utils.ETH_ADDRESS,
amount: depositAmount,
});
await depositHandle.wait();
// Getting the bytecodeHash of the account
const bytecodeHash = utils.hashBytecode(aaArtifact.bytecode);
const factory = await deployer.deploy(
factoryArtifact,
[bytecodeHash],
undefined,
[
// Since the factory requires the code of the multisig to be available,
// we should pass it here as well.
aaArtifact.bytecode,
]
);
console.log(`AA factory address: ${factory.address}`);
}
为了部署工厂,你应该编译合同并运行脚本。
yarn hardhat compile
yarn hardhat deploy-zksync --script deploy-factory.ts
输出结果应该大致如下。
AA factory address: 0x9db333Cb68Fb6D317E3E415269a5b9bE7c72627Ds
注意,每次运行的地址都会不同。
使用账户工作
部署一个账户
现在,让我们部署一个账户并用它发起一个新的交易。在这一节中,我们假设你在zkSync上已经有一个有足够资金的EOA账户。 在deploy
中,文件夹创建了一个文件deploy-multisig.ts
,我们将把脚本放在那里。
首先,让我们部署AA。这将是对deployAccount
函数的一个调用。
import { utils, Wallet, Provider, EIP712Signer, types } from 'zksync-web3';
import * as ethers from 'ethers';
import { HardhatRuntimeEnvironment } from 'hardhat/types';
// Put the address of your AA factory
const AA_FACTORY_ADDRESS = '<FACTORY-ADDRESS>';
export default async function (hre: HardhatRuntimeEnvironment) {
const provider = new Provider('https://zksync2-testnet.zksync.dev');
const wallet = new Wallet('<WALLET-PRIVATE-KEY>').connect(provider);
const factoryArtifact = await hre.artifacts.readArtifact('AAFactory');
const aaFactory = new ethers.Contract(
AA_FACTORY_ADDRESS,
factoryArtifact.abi,
wallet
);
// The two owners of the multisig
const owner1 = Wallet.createRandom();
const owner2 = Wallet.createRandom();
// For the simplicity of the tutorial, we will use zero hash as salt
const salt = ethers.constants.HashZero;
const tx = await aaFactory.deployAccount(
salt,
owner1.address,
owner2.address
);
await tx.wait();
// Getting the address of the deployed contract
const abiCoder = new ethers.utils.AbiCoder();
const multisigAddress = utils.create2Address(
AA_FACTORY_ADDRESS,
await aaFactory.aaBytecodeHash(),
salt,
abiCoder.encode(['address', 'address'], [owner1.address, owner2.address])
);
console.log(`Multisig deployed on address ${multisigAddress}`);
}
注意,zkSync的地址推导规则与Ethereum不同_。你应该始终使用zksync-web3
SDK的createAddress
和create2Address
实用方法。
从这个账户开始交易
在部署的账户可以进行任何交易之前,我们需要向其添加一些ETH,以便它可以支付交易费用。
await (
await wallet.sendTransaction({
to: multisigAddress,
// You can increase the amount of ETH sent to the multisig
value: ethers.utils.parseEther('0.003'),
})
).wait();
现在,作为一个例子,让我们尝试部署一个新的multisig,但交易的发起者将是我们在前一部分部署的账户。
let aaTx = await aaFactory.populateTransaction.deployAccount(
salt,
Wallet.createRandom().address,
Wallet.createRandom().address
);
然后,我们需要填写所有的交易字段。
const gasLimit = await provider.estimateGas(aaTx);
const gasPrice = await provider.getGasPrice();
aaTx = {
...aaTx,
from: multisigAddress,
gasLimit: gasLimit,
gasPrice: gasPrice,
chainId: (await provider.getNetwork()).chainId,
nonce: await provider.getTransactionCount(multisigAddress),
type: 113,
customData: {
gasPerPubdata: utils.DEFAULT_GAS_PER_PUBDATA_LIMIT,
} as types.Eip712Meta,
value: ethers.BigNumber.from(0),
};
关于gasLimit的说明
目前,我们希望l2gasLimit
能够涵盖验证和执行步骤。目前,estimateGas'返回的气体数量是
execution_gas + 20000',其中20000'大致等于默认AA收取费用和验证签名所需的开销。如果你的AA有一个非常昂贵的验证步骤,你应该在
l2gasLimit`中加入一些常数。
然后,我们需要签署交易,并在交易的自定义数据中提供aaParamas
。
const signedTxHash = EIP712Signer.getSignedDigest(aaTx);
const signature = ethers.utils.concat([
// Note, that `signMessage` wouldn't work here, since we don't want
// the signed hash to be prefixed with `\x19Ethereum Signed Message:\n`
ethers.utils.joinSignature(owner1._signingKey().signDigest(signedTxHash)),
ethers.utils.joinSignature(owner2._signingKey().signDigest(signedTxHash)),
]);
aaTx.customData = {
...aaTx.customData,
customSignature: signature,
};
现在,我们准备发送交易。
console.log(
`The multisig's nonce before the first tx is ${await provider.getTransactionCount(
multisigAddress
)}`
);
const sentTx = await provider.sendTransaction(utils.serialize(aaTx));
await sentTx.wait();
// Checking that the nonce for the account has increased
console.log(
`The multisig's nonce after the first tx is ${await provider.getTransactionCount(
multisigAddress
)}`
);
完整的例子
import { utils, Wallet, Provider, EIP712Signer, types } from 'zksync-web3';
import * as ethers from 'ethers';
import { HardhatRuntimeEnvironment } from 'hardhat/types';
// Put the address of your AA factory
const AA_FACTORY_ADDRESS = '<FACTORY-ADDRESS>';
export default async function (hre: HardhatRuntimeEnvironment) {
const provider = new Provider('https://zksync2-testnet.zksync.dev');
const wallet = new Wallet('<WALLET-PRIVATE-KEY>').connect(provider);
const factoryArtifact = await hre.artifacts.readArtifact('AAFactory');
const aaFactory = new ethers.Contract(
AA_FACTORY_ADDRESS,
factoryArtifact.abi,
wallet
);
// The two owners of the multisig
const owner1 = Wallet.createRandom();
const owner2 = Wallet.createRandom();
// For the simplicity of the tutorial, we will use zero hash as salt
const salt = ethers.constants.HashZero;
const tx = await aaFactory.deployAccount(
salt,
owner1.address,
owner2.address
);
await tx.wait();
// Getting the address of the deployed contract
const abiCoder = new ethers.utils.AbiCoder();
const multisigAddress = utils.create2Address(
AA_FACTORY_ADDRESS,
await aaFactory.aaBytecodeHash(),
salt,
abiCoder.encode(['address', 'address'], [owner1.address, owner2.address])
);
console.log(`Multisig deployed on address ${multisigAddress}`);
await (
await wallet.sendTransaction({
to: multisigAddress,
// You can increase the amount of ETH sent to the multisig
value: ethers.utils.parseEther('0.003'),
})
).wait();
let aaTx = await aaFactory.populateTransaction.deployAccount(
salt,
Wallet.createRandom().address,
Wallet.createRandom().address
);
const gasLimit = await provider.estimateGas(aaTx);
const gasPrice = await provider.getGasPrice();
aaTx = {
...aaTx,
from: multisigAddress,
gasLimit: gasLimit,
gasPrice: gasPrice,
chainId: (await provider.getNetwork()).chainId,
nonce: await provider.getTransactionCount(multisigAddress),
type: 113,
customData: {
gasPerPubdata: utils.DEFAULT_GAS_PER_PUBDATA_LIMIT,
} as types.Eip712Meta,
value: ethers.BigNumber.from(0),
};
const signedTxHash = EIP712Signer.getSignedDigest(aaTx);
const signature = ethers.utils.concat([
// Note, that `signMessage` wouldn't work here, since we don't want
// the signed hash to be prefixed with `\x19Ethereum Signed Message:\n`
ethers.utils.joinSignature(owner1._signingKey().signDigest(signedTxHash)),
ethers.utils.joinSignature(owner2._signingKey().signDigest(signedTxHash)),
]);
aaTx.customData = {
...aaTx.customData,
customSignature: signature,
};
console.log(
`The multisig's nonce before the first tx is ${await provider.getTransactionCount(
multisigAddress
)}`
);
const sentTx = await provider.sendTransaction(utils.serialize(aaTx));
await sentTx.wait();
// Checking that the nonce for the account has increased
console.log(
`The multisig's nonce after the first tx is ${await provider.getTransactionCount(
multisigAddress
)}`
);
}
要运行该脚本,使用以下命令。
yarn hardhat deploy-zksync --script deploy-multisig.ts
输出结果应该大致如下。
Multisig deployed on address 0xCEBc59558938bccb43A6C94769F87bBdb770E956
The multisig's nonce before the first tx is 0
The multisig's nonce after the first tx is 1
Tips
如果你得到一个错误没有足够的余额来支付费用。
,尝试增加发送到multisig钱包的ETH数量,以便它有足够的资金来支付交易费用。
完整的项目
你可以下载完整的项目这里。